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Abstract

Governments worldwide subsidize agricultural inputs to support farmers and
increase food production. Selective subsidies that result in exceptionally low
prices encourage farmers to deviate from optimal application levels and result
in the overuse of fertilizers. This paper examines the unintended environmental
and health consequences of increased fertilizer use driven by selective subsidy
reforms. In 2010, India implemented a fertilizer subsidy change favoring ni-
trogen, which led to lower prices relative to phosphorus and potassium fertil-
izers. Leveraging the timing of this policy and exploiting exogenous variation
in pre-determined geographic characteristics such as soil texture and river flow
direction, I find significant effects of the subsidy on nitrogen pollution in down-
stream water bodies and infant mortality in rural areas. For every 1 % percent
increase in nitrate levels, I find a 1.6 % increase in rural infant mortality rates.
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1 Introduction

Input subsidies are a common policy tool used by governments worldwide to reduce

production costs and increase agricultural productivity. Among agricultural input

subsidies, fertilizer subsidies are the most common and financially substantial. How-

ever, maintaining fertilizer subsidies over the long term can be fiscally challenging,

prompting some governments to consider reforms or even complete removal (Gau-

tam, 2015). In some cases, governments choose to phase out subsidies gradually

rather than eliminate them all at once. This selective subsidy removal can create

price distortions and affect fertilizer use patterns, often in unintended ways (Gulati

& Banerjee, 2015). While a large body of literature has focused on the impacts of

fertilizer subsidies when they are first introduced (Holden, 2019), less attention has

been paid to the consequences of selective subsidy removals. This gap is significant

because subsidies often make fertilizers more affordable, leading to overuse. Exces-

sive fertilizer application increases nutrient runoff, contaminating water bodies and

creating health risks for downstream populations.

In many developing countries, where water regulations are often insufficient, vul-

nerable communities are particularly at risk. Despite the significant consequences, the

relationship between runoff-induced water pollution and public health in these con-

texts remains understudied. I examine this issue in the context of fertilizer subsidies

in India where a reform favored nitrogen and altered fertilizer use patterns.

In this paper, I examine the effect of a selective subsidy reform favoring nitro-

gen fertilizers on unintended environmental and health outcomes in India. I study

whether policy-induced increases in nitrogen use contributes to greater runoff and

nitrate pollution, and whether this, in turn, affects infant mortality in downstream

populations. Between 2005 and 2010, the subsidy burden of the Indian government

increased by 500% as global prices increased substantially (Ravinutala, 2016). In

response, the government introduced the Nutrient-Based Subsidy (NBS) program in

2010, which reduced price support for most major fertilizers, including phosphorus

and potassium, but excluded nitrogen 1. Nitrogen prices were left untouched since

policymakers considered the decontrol of the urea sector to be politically sensitive

(Kishore et al., 2021). As a result phosphorus and potassium fertilizer prices in-

1Prior to 2010, all major fertilizers N, P, and K based-fertilizers were controlled by the govern-
ment. The government set the Maximum Retail Prices (MRP) for N, P, and K-based fertilizers. After
2010, the government moved away from product-based subsidy to nutrient-content-based subsidy
for P and K-based fertilizers. See section 2 for more details on the policy.
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creased while urea remained relatively cheaper under continued government price

controls. This policy change led to a significant increase in nitrogen fertilizer use

among farmers, with total nitrogen usage tripling between 2010 to 2015 (Gulati &

Banerjee, 2015). I leverage this NBS policy as a natural experiment to examine the

impact of relative increases in nitrogen subsidy on nitrate pollution in downstream

river bodies and infant mortality.

India provides a compelling case to study fertilizer subsidies, nitrogen runoff, water

pollution, and health for several reasons. First, the Indian government has heavily

subsidized inputs, particularly fertilizers, since the Green Revolution. Input subsidies

to power, fertilizer, irrigation, and credit comprised 1.5% of India’s GDP in 2017

(Ramaswami, 2019). As a result of these subsidies, India is now the second-highest

consumer of fertilizers globally, only second to China. Second, India’s population is

over 1.2 billion, and millions live in rural areas and rely on river water for bathing

and drinking. Unlike developed countries, regulations on water pollution remain

limited and less developed, making these populations even more vulnerable. The

World Health Organization (WHO) reports that three out of every 1000 children

under five years died due to water pollution (WHO, 2004). Finally, India is one of

the few developing countries that has detailed data on fertilizer use, nitrate measures

in water bodies, and infant mortality measures, thereby allowing me to study the

implications of increased nitrogen use on water quality and infant mortality.

There are two main challenges in identifying the causal relationship between fertil-

izer use and infant mortality. First, nitrogen use and nitrogen runoff are endogenous.

Second is the fact that fertilizer use can reduce infant mortality through other chan-

nels such as increased yields, increased incomes, and better health care investments.

To deal with the first challenge, I exploit exogenous variation in predetermined

geographic characteristics to deal with both the endogeneity of fertilizer use and

fertilizer runoff. In particular, I use the variation in the percentage of clay soils. I use

the percentage of clay composition since it does not change easily with management

practices. Clay soils are relevant in this context for two main reasons. 1) Soils with

higher clay content are generally more productive because they can hold moisture

and nutrients longer than coarser soils (Burke et al., 2019). For this reason, studies

also show that the marginal returns to fertilizer application are generally higher in

clay soils.2 The identifying strategy relies on the assumption that the amount of clay

2Soils with a clay content greater than 70 percent may not be ideal as excessive clay can hinder
water drainage and aeration, potentially reducing crop productivity. My data does not contain areas
with extremely high clay content.
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affects fertilizer use decisions since clay soils tend to have higher marginal returns to

fertilizer application. 2) Clay soils contribute to more surface water runoff. Soils with

a relatively high percentage of clay will have smaller pore space and therefore lower

infiltration rates. Consequently, soils with higher levels of clay may result in greater

surface runoff than sandy or silty soil.3

For the second challenge, confounding issues may arise due to the potential posi-

tive effects of increased fertilizer use on infant mortality through enhanced agricultural

productivity as suggested by Bharadwaj et al. (2020) and Gollin and Udry (2021).

Fertilizer use can enhance crop yields, and improve incomes and overall farmer wel-

fare which may led to better food security and improvements in infant health. To

address this issue, I employ an upstream-downstream specification by exploiting the

flow direction of river bodies. Rather than focusing on local soil characteristics near

the infant populations, I trace the watershed upstream and use the soil characteris-

tics of these upstream areas to isolate the effects of nitrate water contamination on

downstream populations.

The introduction of fertilizer subsidies during the Green Revolution was instru-

mental in boosting agricultural yields, improved nutrition, and economic output

(Bharadwaj et al., 2020; Gollin & Udry, 2021; von Der Goltz et al., 2020). How-

ever, recent evidence suggests that the benefits of increased fertilizer use have begun

to plateau, as higher application rates do not translate into productivity gains any-

more (Itin-Shwartz, 2024; Mueller et al., 2017; Wuepper et al., 2020). A major

consequence of prolonged fertilizer subsidies has been the excessive use of fertilizers,

with India leading this growing issue in South Asia. Nitrogen fertilizers, such as urea

are especially overused, due to their heavy subsidization (Gulati & Banerjee, 2015;

Kishore et al., 2021). For example, urea has remained consistently about four times

cheaper for Indian farmers than international prices and has not changed in prices for

over a decade, leading to environmental and health challenges in the region (Cassou

et al., 2017; Huang et al., 2017; Kurdi et al., 2020).

Water contamination is one of the most significant consequences of excessive fer-

tilizer use, as nutrient runoff from agricultural lands pollutes surface water bodies and

groundwater. Globally, only about 35% of nitrogen applied as fertilizer is absorbed by

crops; the rest leaches into water systems, leading to degraded water quality through

issues such as algal blooms, hypoxic zones, and nitrate contamination of drinking

3http://www.faculty.luther.edu/ bernatzr/RainfallRunoff/comet/hydro/basic/Runoff/print version/04-
soilproperties.htm
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sources(Lassaletta et al., 2014; Zhang et al., 2018). These nitrogen-related contam-

inants pose severe health risks for downstream populations (Damania et al., 2019;

James et al., 2005). For infants in particular, elevated nitrate levels in drinking water

can lead to methemoglobinemia, also called the blue baby syndrome, a potentially

fatal condition that impairs oxygen transport in the blood (Knobeloch et al., 2000)

Water contamination in developing countries from agricultural runoff is partic-

ularly concerning, as millions of people rely on untreated river water for drinking,

bathing, and irrigation. The lack of effective regulatory oversight and water treatment

infrastructure makes these communities even more vulnerable to the harmful effects

of water pollution. Greenstone and Hanna (2014) show that, unlike air pollution

regulations, water pollution regulations remain weak in India. Unlike in developed

countries with stronger regulations, the absence of proper monitoring and manage-

ment in these regions allows the impacts of polluted water to go unchecked, leading

to long-term public health challenges. Nitrate contamination from agricultural runoff

is one of the most common chemical pollutants in groundwater aquifers worldwide

(Mateo-Sagasta et al., 2017), posing severe health risks, particularly for infants who

may develop methemoglobinemia.

To measure the effect of the policy on nitrogen use, I combine district-level fertil-

izer consumption data between 2000 and 2015 with soil data. I first show that the

policy does lead to increased nitrogen consumption, focusing on the periods before and

after the introduction of the policy. Then, using data from around 500 water monitor-

ing stations with data on nitrate levels, I study the changes in nitrate levels in water

stations with high levels of clay in their upstream watershed catchment area. Finally,

using household data from approximately 10,000 clusters, I study the impacts of the

policy on infant mortality. In my main results, I find that DHS clusters located close

to water monitoring stations with high fractions of clay soil in their upstream areas

face increased risks of infant mortality. The main reduced form regressions are con-

ditional on state-by-year fixed effects, absorbing any differential trends across states

over time and DHS cluster fixed effects, accounting for cross-sectional time-invariant

characteristics. Even-study style regressions indicate stable pre-trends validating the

identification strategy. I focus on infant deaths within one year of birth to ensure a

precise exposure period, avoiding the complications of long-term differential effects.

I find that a 50% increase in nitrates results in 0.03 additional deaths in rural DHS

clusters with high upstream clay in the post-policy period.

I conduct a series of robustness checks to ensure the validity of the results of this
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study. First, instead of categorizing clay soils into binary high and low variables,

I adopt a specification where the upstream clay percentage is continuous. Second,

I conduct falsification tests by using the main specification on other water quality

indicators available in the data. These include measures such as pH, temperature,

conductivity, dissolved oxygen, and fecal coliform. The policy should theoretically

have no impact on any of the other water quality measures and as expected, I do not

find significant impacts on these measures. Next, there is no consensus on what the

correct distance is to use for an upstream watershed specification. I use the entire

watershed retrieved for each station in the main equation. However, I also run a

version that contains only a 100km upstream watershed area to account for potential

pollution decay. Additionally, I also conduct placebo tests using the downstream

watershed catchment area for all monitoring stations. Clay characteristics below the

water stations should not have an impact on the pollution measures in the station.

As expected, I did not find any changes in nitrate pollution with this model. When

estimating infant mortality rates in the DHS clusters, I use a buffer of 20km around

each cluster to locate nearby water stations in the main specification. I also test

other buffer kilometers and find that results diminish as the infant clusters are located

further from the water stations.

This paper makes three main contributions to the literature. First, it contributes

to the literature on the effects of pollution on health. Much of the literature in

economics focuses on air pollution, largely due to better data availability on air quality

(Graff Zivin & Neidell, 2013). Majority of these studies place a focus on developed

nations like the US (Currie & Neidell, 2005; Currie et al., 2009; Deryugina et al., 2019;

Knittel et al., 2016; Schlenker & Walker, 2016). Among the literature that studies

water pollution, the majority of them place a focus on measuring the impacts of

regulatory measures such as the Clean Water Act in the US (Cai et al., 2016; Currie

et al., 2013; Keiser & Shapiro, 2018). However, pollution sources and regulatory

conditions differ significantly in developing countries. In India, while air pollution

reduction policies have made some progress in lowering air pollutants, regulations on

water pollution remain limited and less developed (Greenstone & Hanna, 2014).

While a few studies consider the impact of water pollution on health and human

capital through improved sanitation channels (Gamper-Rabindran et al., 2010; T.

Garg et al., 2018; Motohashi, 2024), industrial waste (Do et al., 2018; Ebenstein,

2012; Hagerty & Tiwari, 2022), pesticides (Dias et al., 2023; Lai, 2017; Skidmore

et al., 2023), insecticides (Taylor, 2021), algal blooms (Jones, 2019; Taylor & Heal,
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2023), there are relatively fewer studies that look at agricultural runoff which mostly

can be attributed to difficulties in accessing data on runoff.

The closest work that complements this study is by Brainerd and Menon (2014).

They study the effects of overall river fertilizer pollutants on infant health in India

and find significant negative impacts. They exploit seasonal prenatal exposure to

agrichemicals to identify the impact of agrichemical contamination on various mea-

sures of child health. I address a critical aspect that might remain unaddressed in

this paper, the potential confounding effect of seasonal factors on the relationship

between fertilizer pollution and infant mortality. By focusing specifically on the NBS

policy, I disentangle the effects of fertilizer pollution from seasonal variation.4

Second, the paper also contributes to the broader understanding of the implica-

tions of the negative consequences when governments phase out input subsidies and

cause relative price differences among inputs. There is a large body of literature

studying agricultural subsidies, Holden (2019) provides an exhaustive review. While

a growing body of literature explores the effect of subsidy-driven distortions on input

use, productivity, and farmer welfare(Adamopoulos & Restuccia, 2014; Chakraborty

et al., 2024; Donovan, 2021; S. Garg & Saxena, 2023; Hsieh & Klenow, 2009; Kurdi et

al., 2020; Restuccia et al., 2008), less is known about the effects of partial phase-outs

of subsidies on health outcomes. Environmental and human capital concerns are yet

to be taken into policy consideration, although populations in developing countries

are particularly vulnerable to water source pollution (Itin-Shwartz, 2024)

Third, the paper also contributes to improvements in measuring downstream pol-

lution. Most studies conduct the upstream-downstream framework at some admin-

istrative level. This would involve mapping upstream districts to a given district,

for example. While studying water pollution, researchers in the US can rely on

the National Hydrography Dataset to retrieve watersheds and river networks. How-

ever, mapping precise upstream watersheds are still a challenge in developing country

settings. There are few papers that have contributed to improved spatial compu-

tational methods in developing country settings (T. Garg et al., 2018; Hagerty &

Tiwari, 2022). Using an open-source global watershed mapping platform developed

by Heberger (2022), I enhance the spatial analysis by mapping upstream watersheds

for each water monitoring station and running the analysis at the water station level

allowing for precise identification of watersheds contributing to nitrate runoff.

4Another related paper is Zaveri et al. (2020) where they look at the effects of nitrate pollution
on long-term impacts on adults.
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Finally, despite the wide criticisms of the NBS program, there are no causal esti-

mates of its impacts on the environment and health. I provide important and timely

evidence on a policy that is still in place and frequently discussed by the government,

policymakers (Gulati & Banerjee, 2015) and media 5 6 7.

The remainder of the paper proceeds as follows. Section 2 provides background

details on the policy and discusses the expected effects of this policy on nitrogen use.

Section 3 describes the data, and section 4 elaborates on the identification strategy.

I report results in section 5 and section 6 concludes the paper.

2 Background

2.1 Nutrient-Based Subsidy

India has subsidized fertilizers since the Green Revolution, allowing farmers to access

fertilizers at affordable prices. However, between 2005 and 2010, the subsidy burden

of the Indian government increased by 500% as international prices increased sub-

stantially (Ravinutala, 2016). This pushed the government to introduce changes to

the subsidy structure to alleviate the financial burden and encourage a more balanced

use of fertilizers.

In April 2010, the Indian government implemented a significant change in how

fertilizer subsidies were handled, transitioning from a product-based subsidy to a

nutrient-based subsidy system. This new approach focused on providing subsidies

based on the nutrient content of fertilizers rather than providing fixed prices for

specific fertilizer products. Under this scheme, subsidies are based on the content of

key nutrients: nitrogen (N), phosphorus (P), potassium (K) and sulphur (S).8 The

government announces a fixed subsidy rate in rupees per kilogram for each nutrient

every year, determined based on international prices and inventory levels. These per-

kg rates are then converted into per-ton subsidies for each product based on their

nutrient composition. 9 For instance, Diammonium Phosphate (DAP) is the widely

5https://www.downtoearth.org.in/agriculture/cacp-recommends-centre-to-bring-urea-under-
nbs-regime-to-check-overuse-89907

6https://economictimes.indiatimes.com/industry/indl-goods/svs/chem-/-
fertilisers/profitability-for-phosphatic-fertiliser-players-to-improve-at-current-nutrient-based-
subsidy-rates-report/articleshow/97122078.cms?from=mdr

7https://indianexpress.com/article/explained/explained-economics/deregulating-non-
subsidised-fertilisers-9447888/

8NBS is available for DAP, MOP, MAP, TSP and 12 other grades of complex fertilizers
9The top three major nutrients used in India are nitrogen (N), phosphorus (P) and potassium (K).

Urea is the main source of nitrogen and is the most widely used fertilizer. Diammonium Phosphate
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used product for phosphorus. Before 2010, the governemnt set a fixed price for DAP

but after the NBS reform, DAP is subsidized based on its nutrient composition which

is 18-46-0-0 representing the ratio of N:P:K:S.

Using the 2023-2024 rabi season subsidy rates for the product DAP, I show an

example of how the subsidies are calculated. First, the nutrient composition of DAP

is 18-46-0-0. The subsidy rates for N is 47.02 Rs/kg, P is 20.82 Rs/kg and since DAP

doesn’t contain any K or S, the subsidy rate per metric ton (1000 kgs) of DAP are

calculated as the following: Nitrogen subsidy: 18% of 1000 kg = 180 kg, 180*47.02 =

Rs. 8463. Phosphorus subsidy: 46% of 1000 kg = 460 kg, 460*20.82 = Rs. 9577.20.

Adding 8463.60 + 9577.20, the subsidy for DAP is Rs. 18,040 per metric ton.

Following the announcement of the nutrient subsidies each season, manufacturers

can set their own prices for fertilizers after taking the government-announced subsidy

rates. The government transfers the subsidies directly to fertilizer companies based

on actual sales made by retailers. Farmers pay the final subsidized price for each of

the products. In recent years, these sales are recorded through point-of-sale devices

at retail shops to ensure fertilizer availability to farmers at the right prices. Since

manufacturers set prices for P and K fertilizers after decontrol under the NBS policy,

the prices for those fertilizers increased significantly. Prices of P and K based fertilizers

went up by over 150% and 255% respectively.

However, urea, the most widely used fertilizer in India, was exempt from the NBS

scheme. Urea is the only fertilizer that is currently sold at a government-fixed retail

price. The price of urea has remained at almost at the same level for more than 15

years. Urea prices were left untouched since policymakers considered the decontrol

of the entire urea sector to be highly sensitive (Kishore et al., 2021).

This led to a price distortion with high relative subsidies for N and reduced subsi-

dies for P&K. Due to this price increase, the share of nitrogen usage increased notably

within just three years of the policy implementation. The share of nitrogen increased

by 9.5% from 58.8% to 68.4%, suggesting that the imbalance in fertilizer use is policy-

induced (Ansari & Sheereen, 2022). Figure 2 shows farmer-reported prices from the

cost of cultivation survey data, demonstrating that the NBS policy resulted in P and

K price increases relative to N prices.

Gulati and Banerjee (2015) argue that excluding urea from the NBS scheme was

a significant oversight in India’s fertilizer policy reform. They cite the Planning

(DAP) is the most widely used phosphate fertilizer and Muriate of Potash (MOP) is the most widely
used potassium based fertilizer.
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Commission’s twelfth plan document, which acknowledges that ”NBS roll-out was

seriously flawed since urea was kept out of its ambit. Urea prices remain controlled

with only a 10 percent rise at the time of adoption of the NBS in 2010. Meanwhile,

prices of decontrolled products doubled” (Planning Commission, 2013, p. 14). For

more information on the policy see Gulati and Banerjee (2015).

2.2 Clay soil characteristics

Increased response to fertilizer applications I rely on the fraction of clay

available in the districts and upstream watersheds as a source of variation for fertil-

izer application and nutrient runoff. The soil science literature notes that clay-rich

soils have distinct properties that enhance both nutrient retention and water-holding

capacity, making clay soils particularly responsive to fertilizer applications. Unlike

sandy soils, which have larger particles and lower surface area, clay soils consist of

finer particles with higher surface area and cation exchange capacity allowing better

nutrient and water retention. This feature supports greater crop growth and increases

efficiency in nutrient uptake (Zhu et al., 2023).

Increased runof A second feature of clay, which fortunately also addresses the

concern of increased runoff, is their low infiltration rate due to smaller pore spaces.

Clay soils are composed of fine particles with minimal pore scape, resulting in slower

water infiltration and a tendency for higher surface runoff. The high water and

nutrient retention capacity of clay soils mean that they are ideal for holding nutrients

necessary for crop growth, but this benefit comes with trade-offs in terms of water

management. As water moves slowly through clay, it can lead to water logging.

In agricultural regions with high clay content, the combination of nutrient-holding

capacity and slower drainage can enhance fertilizer efficiency, as few nutrients are lost

to the deeper soil layers. However, this same characteristic makes clay soil particularly

prone to surface water runoff, especially during heavy rainfall. This is significant in

my study context, as my identification relies on the exogenous property of clay soils

in increased fertilizer efficiency and runoff to study nitrate pollution in neighboring

water bodies 10.

10More details on soil properties can be found here (University of Wisconsin-Madison Division of
Extension, n.d.)
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2.3 Negative Externality of Excess Nitrogen Fertilizer Use on Water Pol-

lution and Health

The increased use of urea under the NBS program in India may cause unintended

negative externalities on river water quality due to the increased amount of nitrates

entering nearby water bodies. The application of nitrogen-based fertilizers like urea

introduces inorganic nitrogen into the soil where it undergoes a series of chemical

transformations. Initially, nitrogen is decomposed to ammonia, which is then oxidized

into nitrates and nitrites. While nitrates are absorbed by plants during their growth,

excess nitrates that are not utilized by crops can leach into groundwater or runoff

into neighboring water bodies. This phenomenon is exacerbated during periods of

heavy rainfall, accelerating the washing of nitrates into rivers and lakes.

India’s regulatory framework on water pollution is outdated and lacks focus on

nitrate contamination. The Central Pollution Control Board (CPCB) was established

in 1974 as part of the Water Act of 1974. However, this legislation was primarily tar-

geted at reducing industrial pollution sources and extending sewage plants, with little

attention to the regulation of nitrate runoff. In fact, even with strong regulations,

nitrate contamination has been shown to be one of the few water pollutants that

is increasing globally. The US Environmental Protection Agency considers nutrient

pollution to be one of the most widespread, costly and challenging environmental

issues today (Taylor & Heal, 2023). Greenstone and Hanna (2014) show that even

non-nitrate water quality regulations had no impact due to weak implementation.

Excess nitrogen and phosphorus, primarily from fertilizer, leach into water bodies,

feeding the growth of harmful algal blooms in a process known as eutrophication

(Nixon, 1995). These blooms can create hypoxic or ”dead zones” where aquatic

life struggles to survive in due to oxygen depletion. The consequences of nitrate

contamination are not limited to the environment, they pose serious risks to human

health particularly for populations dependent on surface and groundwater for drinking

and other purposes (Li et al., 2021; Liu et al., 2014). Studies have linked high intake of

nitrates with the incidence of cancer, blood diseases and other illnesses (Knobeloch

et al., 2000; Liu et al., 2014). High nitrate levels in drinking water can lead to

methemoglobinemia, commonly known as blue baby syndrome. Methemoglobinemia

reduces blood’s capacity to transport oxygen. Brainerd and Menon (2014) and Zaveri

et al. (2020) establish causal effects of nitrate pollution on birth outcomes, showing

that early life exposure to nitrogen can increase the likelihood of infant deaths.

The challenges of nitrogen pollution in water bodies are further complicated be-
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cause it is nearly impossible to remove nitrates from water at home. The treatment

procedure is expensive and not feasible in most homes in India.11 Installing advanced

water treatment systems in rural or low-income areas is often not practical due to a

lack of infrastructure and high maintenance costs associated with these technologies.

3 Data

3.1 Fertilizer Use

To estimate the difference in nitrogen use after and before the policy, I need detailed

data on fertilizer use. I use the district-level fertilizer consumption data available from

the district-level database (DLD) from the International Crops Research Institute for

the Semi-Arid Tropics (ICRISAT). The apportioned database from ICRISAT includes

details on districts between 1990 upto 2017. This dataset provides information on

the total use of nitrogen, phosphorus and potassium measured in tons, as well as per

hectare usage. I also use data files that include season-wise crop area and production

at the district-level.

I also use detailed farmer-level data on input decisions for all the main crops in

India. This data comes from the Cost of Cultivation Surveys (CCS) 12. The surveys

collect data on input use, crop specific input prices and output prices received by

farmers. Data is collected at the plot level in a few villages in selected tehsils all over

India. I use four rounds of data collected annually from 2008-2009 to 2018-2019. In

each round, the same set of farmers are followed for all planting seasons for three

consecutive years. The data covers all major crops, including rice, wheat, maize and

corn.

3.2 River Water Quality

To estimate water quality, I use the river water quality data from the National Water

Quality Monitoring Programme (NWMP). 13 This dataset includes more than 1100

river monitoring stations. However, only half of these stations record nitrate data.

11Home treatment options are limited since methods such as installation of carbon filters or boiling
do not reduce nitrate levels in water. The process of reverse osmosis can remove nitrates; however,
it is a significantly expensive technology.

12The Cost of Cultivation Surveys are conducted by the Ministry of Agriculture and Farmers
Welfare, Government of India

13NWMP is collected and managed by India’s Central Pollution Control Board.
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These stations also come with geospatial information. 14 For this study, I focus on the

period from 2007 to 2016, as earlier periods do not have enough monitoring stations

recording the main outcome variable nitrates.

The NWMP reports multiple water quality indicators, including nitrate-nitrite

levels, fecal coliform, pH levels, dissolved oxygen (DO), temperature and conductiv-

ity. My main indicator of nitrogen pollution is the level of nitrate-nitrites. I use the

cumulative nitrate-nitrite levels as the leading indicator to evaluate the measure of ni-

trogen pollution in water bodies. Higher nitrate-nitrite levels indicate greater greater

nitrogen contamination. The safety thresholds for nitrate-nitrite levels in water is

generally considered to be 10 ml/L 15

In addition to nitrate-nitrite levels, I examine other indicators of water pollution

such as dissoved oxgyen, fecal coliforms, temperature and pH. In figure 4, I plot all

the monitoring stations in India that track this data.

To identify the direction of flow of the rivers which is key to my identification

strategy, I use the Global Watershed API developed by Heberger (2022) to map the

upstream watersheds. This tool provides all the river tributaries and the origins up-

stream of a given water monitoring station, as well as their corresponding watershed

polygons. The use of the Global Watershed API represents a significant data en-

hancement in my paper. While most studies in this context often conduct analyses at

the district level, my approach is more precise since I map each watershed upstream

of each water quality monitoring station.

Part of the main identification strategy of the study relies on the measurement of

nitrate pollution upstream of a given water monitoring station. These measurements

require precise location of the water stations, however, some of the water stations do

not have reliable latitude and longitude information. There I discard stations that

have an upstream watershed area less than 100 kilometers in the analysis.

3.3 Soil Characteristics

I leverage exogenous variation in soil characteristics to determine fertilizer applica-

tion. To identify the underlying soil type, I use data from the Harmonized World Soil

Database (HWSD) v2.0, released by the Food and Agriculture Organization (FAO).

The HWSD v2.0 is a high resolution global soil inventory, providing detailed informa-

tion on various soil properties in a 30 arc-second (approximately 1km) raster format

14Source: https://cpcb.nic.in/wqm/WQMN list.pdf
15https://www.atsdr.cdc.gov/csem/nitrate-nitrite/standards.html
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worldwide. The HWSD v2.0 provides additional data for seven distinct soil layers,

with the top layer representing about 0-20cm depth. Since I study the implications

of fertilizer runoff, I focus on the topsoil from this raster.

I collect soil details at two scales: district-level and watershed-level. For the

district-level analysis, I compute district-level fractions of clay, sand and silt using the

2011 district boundaries shapefile of India. In addition to the district-level analysis,

I use a more granular version for the water quality monitoring station level analysis.

I use shapefiles of upstream watershed boundaries for each water monitoring station

to calculate fractions of clay, sand and silt for each upstream watershed boundary.

I exploit exogenous variation in soil characteristics. Soil details are collected from

the Harmonized World Soil Database released by the Food and Agriculture Organi-

zation (FAO). This data set is a 30 arc-second raster containing details on various

soil properties across the globe. I compute the district-level fractions of clayey soil

and sandy soil using the 2011 district boundaries of India.

Figure ?? plots the average nitrogen consumption at the district level before the

policy, along with the percentage of clay soils in each district. The plot shows that

both high clay and low clay districts exhibit high levels of nitrogen use prior to the

policy reform.

3.4 Health Outcomes

Infant birth and mortality variables come from the National Family Health Survey

- IV (NFHS-4) 2015-2016. The NFHS is the Demographic Health Survey (DHS)

version of India. This fourth round of NFHS collected data from January 2015 to

December 2016, covering around 600,000 households nationwide. The NFHS col-

lected the following four sets of questionnaires: a household questionnaire, a woman’s

questionnaire, a man’s questionnaire and a biomarker survey.

I specifically focus on the women’s questionnaire from the NFHS-4 in this study.

These data contain detailed information on the reproductive history, such as the year

and month of delivery of every child born for all women in the sample between the

ages of 15 and 49. The reproductive histories also include data on when a child was

born, their gender, whether they were twins and the birth orders. The data provides

information on whether every child born is currently alive, and if not, the age of

death is recorded. I choose infant mortality as the primary health outcome since

it has been established that high levels of nitrates in the water can affect infants

significantly through methemoglobinaemia.
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The NFHS 4 also provides the latitude and longitude coordinates for around 28000

sample clusters. The locations of these clusters are displaced slightly for confiden-

tiality reasons. Urban clusters are displaced up to 2 kilometers and rural clusters are

displaced up to 5 kilometers, with less than 1% of the rural clusters displaced up to

10 kilometers. To account for this spatial measurement error while using the water

quality station data, I draw a 20km buffer around each cluster location and calculate

the average nitrate measures in the water stations within this buffer.

Since birth histories are available for all the women in the sample, I am able to

construct a pseudo-panel of infant mortality, similar to Do et al. (2018). I construct

a cluster-year panel of total number of births, deaths within the first month of life

and deaths within a year of birth, see figure A13.Due to data limitations in earlier

years, I exclude data prior to 2000 from my analysis.

3.5 Weather data

To account for the influence of precipitation on fertilizer runoff into watersheds, I

use the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS).

CHIRPS provides data from 1981 to near-preset and uses both satellite imagery as

well as in-situ station data to create a gridded rainfall product. Using the upstream

watershed shapefiles of each water monitoring station, I retrieve the monthly total

rainfall in the upstream watershed for each water quality monitoring station. Using

the total rainfall upstream might be important since some stations have a smaller

upstream watershed, and some others have bigger upstream watersheds. I then con-

struct annual rainfall measured in millimeters as well as monsoon rainfall.

4 Estimation Framework

I aim to estimate the effect of the subsidy on river water pollution and infant mortal-

ity in the surrounding populations. There are two main challenges. First, fertilizer

application and run-off are endogenous. I need plausibly exogenous variation in nutri-

ent exposure to estimate the causal effects on health outcomes. Second, the increased

use of nitrogen can also directly affect child health through increased agricultural

productivity.

To address the first problem, the endogeneity of nitrogen use, I rely on exogenous

variation from predetermined soil characteristics. Specifically, I leverage the fact that

areas with a higher percentage of clay in their soil composition tend to benefit more
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from fertilizer use (Burke et al., 2019). This relationship comes from the various

properties of clay soil. Clay soils have a higher cation exchange capacity, allowing for

better retention of nitrogen in plant-available forms. It also helps that clay soils also

lead to increased surface runoff. Although they retain water and nutrients well, their

low permeability causes the soil to become saturated more quickly, leading to excess

nitrogen being carried into river bodies, allowing me to isolate the effect of fertilizer

use on nitrate pollution while ensuring the variation in runoff is also through clay

soils.

For the second challenge, I focus on the effects of increased nitrogen use in the

upstream areas on infant mortality in downstream regions. Since part of the identifi-

cation strategy relies on measuring the soil type upstream of a given river monitoring

station, I determine the upstream watershed for each monitoring station by using the

flow direction of the rivers. I use the Global Watershed API developed by Heberger

(2022) to map the upstream watershed boundaries. This tool provides comprehen-

sive spatial mappings for all the river tributaries and their origins upstream of a given

monitor, along with the corresponding watershed polygons. 16 In Figure 5, I explain

the identification strategy by highlighting two water monitoring stations. For each

station, I map the upstream river network and retrieve the corresponding upstream

watershed.

4.1 Differences-In-Differences Design

4.1.1 Nitrogen Use

I use a difference-in-difference approach to estimate the impact of the policy change

on environmental and infant mortality outcomes. The policy change in 2010 led

fertilizer manufacturers to increase prices for P and K, resulting in farmers shifting

toward greater nitrogen use due to its lower price. I treat the sudden price increase of

P and K after 2010 as a shock that induced farmers to shift toward greater nitrogen

use. I compare districts with higher clay content to those with lower clay content

before and after the 2010 policy change. The main identifying assumption in this

design is that both sets of districts would have seen their fertilizer use develop along

parallel trends in the absence of the NBS policy.

I first estimate the following event-study style regression specified in equation 1:

16https://mghydro.com/watersheds/
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Yist =
∑

k ̸=2009

βk High Clayi · 1{k = t}+ ϕd + γst + ϵdt (1)

The main outcome of interest is the usage of nitrogen, phosphorus and potassium

fertilizers in kgs per hectare, in district i, state s and time period t. I denote the

treatment variable as High Clay, a dummy variable with the value 1 for districts with

above median clay levels and zero otherwise. I omit 2009 as the baseline year, as the

policy was launched in early 2010. The coefficients on the interaction term, βk, recover

the change in fertilizer use following the policy change. Each coefficient provides an

estimate for the difference between the high and low clay districts before and after

the policy. I should expect to see no systematic difference between districts with high

and low levels of clay before 2009 to be consistent with the identifying assumption of

parallel trends on the counterfactuals. If the policy change in fertilizer prices resulted

in consumption shifts, then I should expect to see the coefficients diverge from 0

immediately after 2009. The differences could continue to diverge further over time

as prices continued to remain high for P and K fertilizers.

My comparison of high versus low clay districts will be able to recover a lower

bound of the effects following the policy change. This is because the districts that

are classified into low clay content may still be affected by the policy since their

baseline nitrogen use is not zero. I am interested in the residual variation that is not

explained by time-invariant characteristics at the district level. I include district-fixed

effects to account for district-level observable and unobservable characteristics that

are constant throughout my sample. I also add state-by-year fixed effects to account

for time-varying factors that differ across states.

Following the event-study style regressions, I also estimate aggregated versions

of equation 1 to summarize average treatment effects. I define a post-NBS policy

dummy that is equal to one after 2010. Following is my main regression specification:

Fertilizerist = β1High Clayi + β2Postt + β3(High Clayi × Postt) + µi + ηst + ϵiwt (2)

where Fertilizerist is the N, P and K consumption per hectare at district i from

state s in year t; HCi, stands for High Clay and is a dummy variable that indicates

whether the fraction of clayey soil in the district is above the median. Figure A12 in

the appendix shows this binary treatment variable spatially. Post is a dummy for the

post-policy period 2010 and after. The main estimate of interest is β3, which is an
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interaction between HighClay and the Post period. µ and η are district and state-

year-fixed effects that account for any cross-sectional time-invariant characteristics

and any differential trends across states over time. I use state-by-year fixed effects

in the main model because there are states that launched individual programs and

welfare subsidies during different time points.

4.1.2 Nitrate Pollution in Water Bodies

Next, Similar to the specification in equation 1, I use a similar reduced-form specifi-

cation to estimate nitrate pollution levels using water quality measures at monitoring

stations. However, I use an upstream-downstream specification to estimate pollution

effects to address endogeneity concerns. Instead of using clay levels at each water

station level, I use clay levels upstream of each monitoring station by using the river

flow direction. I compare water monitoring stations with higher clay content in their

upstream watersheds to those with lower clay content before and after the policy

change. The main identifying assumption in this design is that both groups of mon-

itoring stations would have nitrate-nitrite levels develop along parallel trends in the

absence of the policy. The model also includes total precipitation in the upstream

watersheds for each water monitoring station as a control to account for the potential

influence of rainfall on nitrogen runoff from agricultural fields.

I estimate the following event-study style regression specification:

Nitratesist =
∑

k ̸=2009

βk Upstream Clayi · 1{k = t}+ ϕd + γst + ϵdt (3)

My main outcome of interest in this setting is the maximum nitrate-nitrite levels,

Nitratesist in water station i located in state s in year t. Additionally, I also estimate

the same model for other water quality indicators such as fecal coliform rates, pH

levels, dissolved oxygen content, temperature and conductivity. I omit 2009 as the

baseline year, as the policy was launched in 2010. I am interested in the coefficient on

the interaction term, βk to get the changes in nitrate levels after the policy. I should

expect no systematic difference between water monitoring stations with high and

low levels of clay in their upstream watersheds to be consistent with the identifying

assumption of parallel trends on the counterfactuals. If the policy resulted in increased

pollution levels, I should expect to see the coefficients increase from 0 immediately

after 2009. The differences should sustain over a few years particularly if nitrogen

levels were up for a few years.
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Similar to the previous specification, here too, my comparison of water monitoring

stations with high versus low clay in their upstream watersheds will recover a lower

bound of the effects of the policy change. This is because water stations that are

classified into low clay groups may still be affected by the policy since their baseline

nitrate levels are not zero. To retrieve the residual variation, I include station-level

fixed effects to account for time-invariant observable and unobservable factors across

water monitoring stations and state-by-year fixed effects to account for all the differ-

ential trends across the states over time.

I estimate aggregated versions of equation 3 to estimate average treatment effects.

I define a post-NBS policy dummy that is equal to one after 2010.

Nitratesist = β1Upstream Clayi + β2Postt + β3Upstream Clayi × Postt

+ β4Upstream Precipitation + µi + ηst + ϵit
(4)

where Nitratesist measures nitrate pollution, represented by maximum nitrate-

nitrite levels at monitoring station i located in state s in year t. Upstream Clay is

a dummy variable that indicates if the water station has high clay content in its up-

stream watershed. I also look at other water quality indicators such as maximum fecal

coliform, pH levels, dissolved oxygen (DO) and biochemical oxygen demand (BOD).

I include station-level and state-by-year fixed effects to account for any differential

trends across the states over time. I am interested in the estimate β3 which is the

interaction between High Clay Upstream and the Post period. µi and ηst are water

station and state-year fixed effects.

4.1.3 Infant Mortality

Reduced Form Specification To estimate infant mortality, I use the exact reduced-

form specification in equation 3. I use an upstream-downstream specification to es-

timate mortality rates at DHS clusters. I first map the closest water stations to the

clusters and compute the average nitrates in the upstream watersheds of these sta-

tions. I then compare clusters with higher clay content upstream to those with lower

clay content before and after the policy change. The key identifying assumption here

is that both groups of DHS clusters would have mortality rates develop along parallel

trends in the absence of the policy. Following is the event-study-like specification:
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Infant Mortalityist =
∑

k ̸=2009

βk Upstream Clayi · 1{k = t}+ ϕd + γst + ϵdt (5)

My main outcome variable in this setting is the number of infant deaths within

one year after birth at DHS cluster i in state s and year t. I omit 2009 as the baseline

year. The coefficient of interest is βk which provides the changes in mortality levels

after the policy. For the identifying assumption of parallel trends to hold true, there

should be no difference between clusters with high levels of clay in their upstream

region and clusters with low levels of clay in their upstream region. The estimates

will most likely recover a lower bound since DHS clusters that are classified into low

clay groups may still be affected by the policy. I also include DHS cluster-level fixed

effects and state-by-year fixed effects.

Infant Mortalityist = β1Upstream Clayi+β2Postt + β3Upstream Clayi × Postt

+ µi + ηst + ϵit
(6)

In equation 6, Infant Mortalityit is the number of infant deaths within one year

of birth and 5 years at cluster i from state s in year t. µ refers to DHS cluster

fixed-effects and η refers to time fixed effects.

Instrumental Variable Design Estimation of equation 6 yields the reduced-form

impact of the NBS policy on infant mortality, but the model does not provide esti-

mates for the effect of nitrates. To address this, I employ an IV design, exploiting

upstream clay levels to predict nitrate levels downstream. I use upstream clay lev-

els interacted with post-NBS indicator as an instrument for nitrates to examine the

effects of the NBS policy on infant mortality. Higher levels of clay in the upstream

areas of the water quality monitoring station increase the risk of increased nitrate

runoff through excessive nitrogen application and surface runoff.

The IV design builds on the key assumption of exclusion restriction. Here Up-

stream Clay interacted Post must affect infant health only through the channel of

nitrate pollution after controlling for precipitation, DHS cluster fixed effects and

state-year fixed effects. I adopt the upstream-downstream specification described in

figure 6 to avoid local effects of soil quality on health. Higher levels of clay soils might

affect the agricultural yield of crops, farmer welfare and thereby increased access to
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nutrition and health investments. To address this concern, I use upstream clay levels

as an instrument for downstream nitrate contamination. I also include furthers tests

regarding the exclusion restriction.

In the first stage of the IV design, a water monitoring station with high clay

content in its upstream area is expected to experience higher levels of nitrogen runoff

and, therefore, contain more nitrates. As shown in figure 3, there is substantial

variation in clay percentages across the different districts of India, similarly, upstream

watersheds of the water monitoring stations also contain variation in the percentages

of clay. As expected, I show in table 5 that for stations with high levels of upstream

clay, nitrates increase post-policy by 1.3 mg/l.

I adopt the following two-stage least square regressions where regressions 7 and 8

are second and first stage regressions, respectively.

Infant Mortalityist = β0 + β1Nitratesist + β2Precipitation + µi + ηst + ϵit (7)

Nitratesist = β0 + β1(Upstream Clayi × Postt) + β2Precipitation + µi + ηst + ϵit (8)

where Infant Mortalityist is the number of infant deaths per cluster i in state

s and year t. Nitratesist is the maximum nitrate-nitrite levels measured in mg/l at

station i in state s in year t. I construct a time-variant instrument for the panel

data analysis by interacting the time-invariant upstream clay levels for station i with

a post-NBS indicator that takes the value 1 after 2010, when the policy was intro-

duced. Monitoring station fixed effects are included to control for any time-invariant

characteristics of each monitoring station. I also include state-year fixed effects to

account for trends across states over time. Standard errors are clustered at the station

level since variation in nitrates are observed at this level.

5 Results

5.1 Summary of nitrogen use after the policy reform

Figure 1 presents estimates of N:P and N:K ratios before and after the NBS policy.

I run event-study like regressions with fertilizer ratio on year dummies. Standard

errors are clustered at district level and the model includes district fixed effects. The

recommended ratio is typically 4:2:1 (National Academy of Agricultural Sciences,

2009) with variations based on underlying soil types. I see an increase in both ratios
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following the policy implementation, suggesting that farmers may have increased their

overall nitrogen use relative to phosphorus and potassium. This shift is counter to

the government’s stated objectives of reducing budget costs and promoting balanced

nitrogen application.

5.2 Effects on Nitrogen Use

In this section, I first show that the 2010 fertilizer subsidy change impacts nitrogen

use. I show that districts with clay levels above the median experience an increase

in nitrogen consumption following 2010. This serves as an important foundation for

the rest of analysis.

Figure 2 shows the increase in prices for phosphorus and potassium fertilizers after

2010. There is a slight increase in nitrogen prices because some non-urea fertilizers

also contain nitrogen. Similar to S. Garg and Saxena (2023) I run a regression with

log fertilizer consumption on year dummies and including district fixed effects. Figure

2 shows a decline in the consumption of P and K after the policy change.

Fig 7 visualizes the main results from the event study style regressions, focusing

on fertilizer use. I show a significant and sustained increase in nitrogen consumption

in districts characterized by high clay content following the 2010 policy change. The

upward trend in nitrogen use continues at a steady rate until 2016. Notably, I do

not find significant changes in the consumption patterns of phosphorus and potas-

sium fertilizers despite the increase of prices of these fertilizers. The stability in the

consumption of P and K might appear counterintuitive but most farmers prioritize

maintaining established fertilization practices to safeguard yields, despite increased

input costs.

Table 3 presents the main findings using the baseline specification in equation 2

conditioned on state-year fixed effects and district-fixed effects. The findings show a

significant impact of the policy on nitrogen consumption in districts with high clay

content. Dependent variables are listed in the columns. Standard errors are clustered

at the district level. The estimate for nitrogen is 15.37, suggesting that districts with

high clay content experienced an average increase in nitrogen use of 15.37 kgs/ha

compared to pre-policy years. Confidence intervals exclude zero at 95% level for

nitrogen use. Given that the mean nitrogen use is 84 kgs, the results translate to a

18% increase in nitrogen use post-policy. Columns 2, 4 and 6 report outcomes with

clay as continuous variable instead of categorical high and low clay levels.
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5.3 Effects on Nitrate Pollution

Now that I have shown an increase in nitrogen consumption after the policy change,

I estimate the impact of this increase in nitrogen use on nitrogen pollution in down-

stream river stations. I find that stations with high levels of clay in their upstream

watersheds experience higher nitrate levels after that policy.

I present the main findings using the baseline specification from equation 4 in

table 3. To account for the potential influence of rainfall on nitrogen runoff, I include

precipitation controls in the model. Specifically, I control for both total annual precip-

itation (in mm) and total precipitation during the monsoon months in the upstream

watershed region for each water station. The model is conditioned on state-year fixed

effects and water station fixed effects. Standard errors are clustered at the station

level.

I find that post policy, stations that have high levels of clay in their upstream wa-

tershed regions experience an increase in nitrate-nitrite levels by 5.5 mg/l on average.

This increase is particularly alarming, considering that the safe limit for nitrate-

nitrogen in drinking water is 10 mg/L. In this case, an increase of 5.5 mg/l in nitrates

could potentially push many stations close to, or even over the safety threshold for

drinking water.

This increase is statistically significant and confidence intervals exclude zero at

95% level. The dependent variable mean is around 3.08 mg/L, meaning that the

observed increase in nitrates represents a staggering 80 percent rise in nitrate-nitrite

concentrations.

Figure A11 presents results from the event-study version of the model. Pre-trends

appear stable, suggesting that there were no significant differences in nitrate levels

between stations with high levels and low levels of clay in their upstream water-

sheds, before the NBS program launch in 2010. Following the policy change, nitrate

contamination increases in high-clay areas. This increase persists over time and is

consistently positive and nearly significant in most post-policy years. Such a huge

increase, persisting over time can lead to severe environmental disruptions and health

consequences. Nitrate-nitrite data became available for a larger number of monitoring

stations only after 2006, which is just three years before the implementation of the

NBS program in 2010. As a result, my analysis has a relatively shorter pre-period

compared to the post-period.
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5.3.1 Falsification Tests on Water Quality Indicators

To further validate the robustness of my results from the water quality regressions

and to ensure that the estimated effects are indeed attributable to the fertilizer policy

change, I conduct a series of falsification tests using other water quality indicators

that should theoretically be unaffected by the policy and my regression specification.

I use these tests to rule out the possibility that the observed changes in nitrate-nitrite

levels are due to other unrelated factors affecting water quality in general.

I conduct falsification tests to examine the effects of the policy using other wa-

ter quality indicators that are unrelated to the policy. I test my framework on five

other water quality indicators unrelated to nitrogen pollution: fecal coliform, tem-

perature, dissolved oxygen, pH and conductivity. Using the same design and model

specification, I compare these water quality measures before and after the 2010 pol-

icy implementation in stations with high levels of clay in their upstream watersheds

versus stations with low percentages of clay. I find no statistically significant differ-

ences in any of the indicators. Results are reported in table 3. This lack of effect on

unrelated water quality measures strengthens the interpretation of my main results,

suggesting that the observed increase in nitrate-nitrite levels is indeed a consequence

of the fertilizer policy change. I also run even study plots for these indicators to check

for pre-trends. Pre-trends are stable and are reported in figure A11. Panel A presents

regression results where the entire upstream region for each water station is consid-

ered. In Panel B, the upstream region is capped at 100 km to account for pollution

decay over distance, serving as an additional robustness check for the results.

Table 4 reports estimates using clay levels downstream of water monitoring sta-

tions. Downstream Clay is an indicator variable to denote water stations with clay

levels above the median in the area below the water monitoring station. Standard

errors are clustered at the water station level.

5.4 Effects on Infant Mortality

The impact of agricultural policies on public health can be complex. Having es-

tablished a clear link between the 2010 fertilizer policy change and increased nitrate-

nitrite levels in water bodies, I now estimate the impacts of this policy on infant health

outcomes. I specifically focus on infant mortality rates, defined as deaths within the

first year of life. I use these measures for several reasons. First, it is well-established

that nitrates affect infants the most, so much so that many countries set the nitrate
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threshold in drinking water based on the level needed to prevent methenoglobenimia.

Second, infant mortality rates are less likely to be confounded by other long-term

lifestyle factors or cumulative exposure issues.

Table 6 report the reduced-form and instrumental variable approach findings based

on equation 6 and equation 7. All specifications are conditioned on state-year fixed

effects and DHS cluster fixed effects with standard errors clustered at the cluster

level. The results show a huge difference in how the policy affected urban and rural

areas. In rural clusters with high levels of clay in their upstream areas, I find an

increase in infant mortality rates post policy. The dependent variable mean is 0.08,

this increase represents a substantial relative change in infant mortality. Interestingly,

the coefficients for infant mortality in urban areas, while statistically insignificant are

negative. Urban areas might not be affected due to better water management and

access to alternative sources of drinking water.

5.5 Rainfall Heterogeneity

In this section, I examine if rainfall amplifies the impact of the policy on nitrate levels

in rivers. Agricultural runoff, especially from nitrogen-based fertilizers, is known to

increase with higher precipitation which facilitates nutrient movement into nearby

water bodies (Wang et al., 2023). This effect may be particularly relevant during

monsoon months when rainfall is intense and runoff potential is heightened.

To test this relationship between nitrogen runoff and precipitation, in addition to

the main difference-in-difference design, I use a triple-difference approach. First, I

calculate monthly precipitation data at the upstream watershed level for each water

monitoring station and then aggregate the rainfall data annually and during the

monsoon months of June, July, August and September.

I then look at the interaction between a dummy variable that indicates post-

NBS years and the measure of rainfall upstream from a water monitoring station.

In the specification, I categorize rainfall into quartiles across years and monitoring

stations, omitting the lowest quartile as the reference. Results, shown in Column

1 in Table 8 indicate that nitrate concentrations are highest in the second quartile

of rainfall. Interestingly, the effect diminishes in the higher quartiles, with results

that are slightly lower and statistically insignificant. This pattern suggests that while

moderate rainfall in the second quartile facilitates fertilizer runoff, heavier rainfall

in the upper quartiles may dilute nitrate concentrations in water bodies, reducing

detectable pollution levels.
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5.6 Robustness Checks

I evaluate and validate the robustness of the main results, I through many sensitivity

analyses and alternative specifications.

Alternative Instrumental Variable Approach

As a robustness check, I employ both a reduced-form difference-in-differences de-

sign and an instrumental variables approach to estimate the effects of the NBS policy

on infant mortality. Ordinary least squares estimates may be biased due to the en-

dogeneity of nitrate levels in river bodies near each cluster.

For the IV design, I use the percentage of clay upstream of each DHS cluster,

interacted with a post-NBS policy indicator as the instrument. High clay content in-

creases the likelihood of higher nitrogen use and consequently higher nitrate pollution

in downstream regions. As shown in table 6 estimates from both specifications show

similar results, however, only the IV estimates are statistically significant.

Clay soil categorization

I explore whether an alternative definition of the soil variable affects my findings.

Instead of categorizing districts into high clay and low clay groups, I use the fraction

of clay as a continuous variable in the specification accounting for state-year fixed

effects and district fixed effects. This allows me to examine how varying levels of clay

content affect my main outcomes. Results are robust and are reported in table 3.

This addresses potential concerns about arbitrary cutoffs in the binary high and low

clay categorization I use in the main analysis.

Upstream watershed boundary

There is no consensus on how far upstream is upstream for pollution mapping.

If the distance is larger, then the mapping might not be accurate due to decay in

pollution measures. Studies generally deal with this issue by defining various distance

ranges and check if the results are still robust. I use the entire watershed identified

from the watershed mapper in my main specification. However, I also restrict the

upstream area to only 100km radius and rerun the same specifications and find similar

results. Pable B of table 3 reports results of nitrate pollution. The table also reports

results for other water quality measures and find no impacts.

Infant Mortality - DHS cluster buffers To estimate the effect of upstream ni-

trate pollution on infant mortality, I create 20km buffers around each infant cluster
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and calculate the average nitrate levels from water monitoring stations located within

these buffers in my main specification. Given that the DHS infant clusters are spa-

tially jittered by approximately 10km for confidentiality, I consider the 20km buffer

as a reasonable buffer for my analysis. However, to ensure robustness, I run the same

specification using different buffers of 10, 20, 30 and 40km. Results in table 7 show

that the estimated effect of nitrate pollution on infant mortality is strongest and sta-

tistically significant within the 10 and 20km buffers for rural DHS clusters. Beyond

20km, as I include DHS clusters that are further away from these surface water sta-

tions, the effect diminishes and loses significance, suggesting that the proximity to

contaminated water sources is key.

Placebo tests using downstream clay To validate the estimates on nitrate pol-

lution, I conduct placebo tests using clay levels from the downstream regions of each

water monitoring station. Since downstream clay levels should not influence nitrate

levels in upstream water sources, I should not observe any increase in nitrates associ-

ated with these downstream soil variables. Consistent with the expectations, results

in table 4 show no significant effect of downstream clay levels on nitrate concentrations

in upstream stations, supporting the validity of the identification strategy.

6 Conclusion

The need for enhancing agricultural productivity, particularly through increased fer-

tilizer use is a priority for many governments. These policies aim to protect farmers,

ensuring they have access to inputs that can improve yields. However, poorly de-

signed subsidy programs can have far-reaching consequences that go beyond their in-

tended goals. In this paper, I examine how India’s Nutrient-Based Subsidy program,

launched in 2010, skewed fertilizer use towards nitrogen and explore the unintended

environmental and public health impacts of this policy. Using detailed datasets on

district-level fertilizer use, water quality indicator measures, and geospatial informa-

tion on child mortality constructed from the demographic and health surveys, I show

that the fertilizer subsidy change has negative externalities on river pollution and

human health. To address potential endogeneity concerns on nitrogen use, I use the

timing of the policy and predetermined exogenous variation in soil physical texture

and river flow direction.

Using a difference-in-difference approach, I conduct three key analyses. First,

I estimate changes in nitrogen use as a result of the policy. I show that districts
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with high clay content, where the returns to nitrogen fertilizer are greater, saw a

significant increase in their nitrogen use - about 18% on average after the policy.

This result highlights how the policy disproportionately incentivized nitrogen use in

these regions, exacerbating an already imbalanced fertilizer application system that

favored nitrogen over phosphorus and potassium.

Second, I examine whether this increase in nitrogen use results in higher nitrate

levels in nearby water bodies. Results from approximately 500 water-quality stations

show an increase in nitrate-nitrite levels in water monitoring stations located down-

stream from watersheds with high clay content. This result suggests that the subsidy

reform not only altered fertilizer application rates but also had significant impacts

on water pollution. In fact, the nitrate levels nearly doubled in these regions. To

rule out other potential causes, I perform falsification tests by looking at water qual-

ity indicators that should not be affected by the policy such as fecal coliform levels,

temperature, conductivity, and pH. These tests show no significant changes, further

supporting my results that the policy-driven increase in nitrogen use is the primary

driver behind the rise in nitrate contamination.

Third, I examine the link between these nitrate increases and infant mortality

rates. By constructing a pseudo-panel of approximately 10000 clusters from the DHS

survey data, I show that rural areas downstream of high-clay regions experienced

increased infant mortality rates in the years following the policy change, suggesting

that the environmental pollution had tangible public health consequences. Using an

instrumental variable approach, I find that a 1.3 mg/l increase in nitrate levels leads

to 0.03 additional infant deaths in rural DHS clusters with high upstream clay in the

post-policy period.

My results underscore the externalities that can be generated from policies that

favor one type of input over others. In this case, the government’s decision to main-

tain low urea prices while reducing the subsidies on P and K disrupted the balance

of fertilizer use even further, leading to nitrate pollution and public health costs. Al-

though the government’s decision to reduce subsidies for phosphorus and potassium

was primarily motivated by the need to cut the overall budget spent on fertilizer

subsidies, this shift led to increased nitrogen use. Despite increased nitrogen use,

yields do not increase substantially post-policy. Not only did it increase environmen-

tal burdens, but it also did not contribute to increased food production, which may

have mitigated some of the societal costs. The NBS policy provides a good example

of how hard-to-reverse environmental and health costs must be accounted for when
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evaluating the introduction of policies.

Many governments face political and economic pressure to reduce subsidies, and

they often do so in a phased-out manner, as was the case in India. The NBS policy was

introduced to reduce the financial burden of fertilizer subsidies, but political concerns

prevented any changes to the highly subsidized urea, leading to an imbalance that

was difficult to reverse. This case shows the risks of sudden, one-sided policy shifts

that do not fully account for their broader social and environmental impacts.

28



References

Adamopoulos, T., & Restuccia, D. (2014). The size distribution of farms and inter-

national productivity differences. American Economic Review, 104 (6), 1667–

1697. https://doi.org/10.1257/aer.104.6.1667

Ansari, A. N., & Sheereen, P. (2022). An Analysis of Fertiliser Subsidies in India.

Saudi Journal of Economics and Finance, 6 (12), 406–412. https://doi.org/10.

36348/sjef.2022.v06i12.001

Bharadwaj, P., Fenske, J., Kala, N., & Mirza, R. A. (2020). The Green revolution

and infant mortality in India. Journal of Health Economics, 71, 102314. https:

//doi.org/10.1016/j.jhealeco.2020.102314

Brainerd, E., & Menon, N. (2014). Seasonal effects of water quality: The hidden

costs of the Green Revolution to infant and child health in India. Journal of

Development Economics, 107, 49–64. https://doi.org/10.1016/j.jdeveco.2013.

11.004

Burke, W. J., Frossard, E., Kabwe, S., & Jayne, T. S. (2019). Understanding fertilizer

adoption and effectiveness on maize in zambia. Food Policy, 86, 101721. https:

//doi.org/https://doi.org/10.1016/j.foodpol.2019.05.004

Cai, H., Chen, Y., & Gong, Q. (2016). Polluting thy neighbor: Unintended conse-

quences of china s pollution reduction mandates. Journal of Environmental

Economics and Management, 76, 86–104.

Cassou, E., Tran, D. N., Nguyen, T. H., Dinh, T. X., Nguyen, C. V., Cao, B. T.,

Jaffee, S., & Ru, J. (2017). An overview of agricultural pollution in vietnam:

Summary report 2017.

Chakraborty, P., Chopra, A., & Contractor, L. (2024). The equilibrium impact of

agricultural support prices and input subsidies.

Currie, J., Graff Zivin, J., Meckel, K., Neidell, M., & Schlenker, W. (2013). Some-

thing in the water: Contaminated drinking water and infant health. Canadian

Journal of Economics/Revue canadienne d’économique, 46 (3), 791–810.
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7 Figures

Figure 1. Nitrogen-Phosphorus and Nitrogen-Potassium ratios pre and post NBS
policy
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Notes: The figures shows N:P ratios and N:K ratios before and after the policy using
district level dataset. Y axis plots coefficients from an event-study like regression
where N:P and N:K are the outcome variables regressed on year dummies. The
specification includes clustered standard errors and district fixed effects.
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Figure 2. Fertilizer Prices reported through Cost of Cultivation Surveys
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Notes: This figure shows farmer-reported fertilizer prices for the three main nutrients
N, P and K. Data is retrieved from the Cost of Cultivation Surveys
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Figure 3. Nitrogen Use and Clay Type by Districts

Notes: The left panel displays nitrogen consumption before the policy change in
2010. The right panel shows the percentage of clay soils on average for each district.
Nitrogen data comes from ICRISAT and soil data comes from the FAO soil raster
database.
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Figure 4. Water Monitoring Stations

Notes: This map plots all the river monitoring stations in India. Data is from India’s
Central Pollution Control Board.
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Figure 5. Illustration of Upstream Soil Mapping for Water Monitoring Stations

Notes: This figure illustrates the upstream-downstream framework used in the main
specification to analyze the effect of upstream soil characteristics on water quality
in downstream monitoring stations. I highlight two monitoring stations and their
respective upstream river network and watershed area retrieved using the global wa-
tershed mapping API. This map displays district borders in grey lines and water
quality monitoring station locations in red.
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Figure 6. Illustration of Upstream Soil Mapping for DHS Clusters

Notes: This figure illustrates the upstream analysis, which analyses the effect of
upstream soil characteristics on infant mortality in a downstream DHS cluster. I
highlight a dhs cluster and take a buffer of 20km. I then take all the water monitor-
ing stations within this buffer and calculate the average clay levels of the upstream
watershed of each of these stations.
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Figure 7. Event Study Plots of N, P and K use in High vs. Low Clay Districts

Notes: The figure shows the regression coefficients of fertilizer use for N, P and
K on the interaction terms between upstream high and low clay levels and year
dummies. The 95% confidence intervals are shown with dashed lines. Standard
errors are clustered at the district level. The model includes district fixed effects and
state-year fixed effects.
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Figure 8. Maximum Nitrate-Nitrite Levels in Water Monitoring Stations in high vs
low clay districts

Notes: The figure shows the regression coefficients of nitrate-nitrite levels in mg/l
on the interaction terms between upstream clay levels and year dummies. The 95%
confidence intervals are shown as the shaded region. Standard errors are clustered at
the district level. The model includes water station fixed effects and state-year fixed
effects.

41



8 Tables

Table 1. Yearly Fertilizer Consumption and Share

Year
Nitrogen Phosphate Potassium

Tons % Tons % Tons %
2005 40541.51 61.18 16580.83 26.69 7696.33 11.81
2006 43927.33 62.56 17670.44 26.45 7437.82 10.66
2007 45898.67 62.81 17585.36 25.36 8384.78 11.51
2008 48161.48 59.81 20775.95 26.84 10578.99 13.03
2009 49899.38 58.58 23322.29 28.15 11631.98 13.27
2010 52996.01 58.57 25747.32 28.88 11246.96 12.54
2011 54815.70 61.90 25370.15 28.30 8243.23 9.80
2012 53821.25 65.25 21136.08 26.10 6458.92 8.66
2013 53633.78 67.74 17986.17 23.19 6612.28 9.07
2014 54315.87 65.51 19526.48 23.95 8085.15 10.22
2015 55642.46 64.63 22376.63 25.79 7541.08 9.26
2016 53589.92 64.04 21463.46 25.85 7990.75 9.79
2017 52838.46 63.75 21352.56 25.96 8589.55 10.29

Notes: Table reports annual fertilizer consumption for the major nutrients N, P and
K from 2005 to 2017 using district-level fertilizer consumption data from ICRISAT.
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Table 2. Impact of NBS Policy on Fertilizer Use

Nitrogen Phosphorus Potassium

(1) (2) (3) (4) (5) (6)
High Clay x Post 15.37∗∗ -0.0241 3.031

(5.949) (3.259) (2.204)

Clay x Post 0.881∗∗∗ 0.136 0.133
(0.268) (0.141) (0.115)

Observations 4162 4162 4162 4162 4162 4162
Dep var mean 84.48 84.48 33.99 33.99 16.90 16.90
District FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table reports estimates of the Nutrient-Based Subsidy Reform on Fertilizer
use in districts with high vs low levels of clay soil. High Clay districts refer to districts
with clay levels above the median and is a dummy variable with the value 1 for high
clay districts and 0 otherwise. Standard errors are clustered at the district level. All
regressions include district fixed effects and state-year fixed effects. Columns 1, 3 and
5 of the table present estimates using the binary treatment variable while columns
2,4 and 6 present results with clay as continuous variable instead of categorical high
and low clay levels.
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Table 3. Impact of NBS Policy on Water Quality Measures

(1) (2) (3) (4) (5) (6)
Nitrates Fecal Coli. Temperature DO pH Conductivity

Panel A: Upstream Clay

Upstream Clay x Post 5.574∗∗ -473018.3 0.0956 0.183 -0.157 163.1
(2.220) (412726.4) (0.451) (0.221) (0.125) (254.6)

Panel B: Upstream Clay upto 100 km

Upstream Clay x Post 2.571∗ -1537558.6 0.487 0.326 -0.0648 -487.1
(1.346) (1469486.4) (0.479) (0.273) (0.0827) (707.5)

Observations 2739 3615 4111 4128 4158 4080
Dep var mean 3.085 2568940.3 28.40 8.135 18.05 1289.1
Station FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table reports estimates of the Nutrient-Based Subsidy Reform on water quality measures from water monitoring
stations. Sample consists of water quality measurements recorded at stations all over India from 2007 to 2014. Upstream
Clay refer to water stations with clay levels above the median in their upstream regions and is a dummy variable with the
value 1 for high clay upstream and 0 otherwise. Standard errors are clustered at the water station level. Column 1 reports
coefficients for nitrate pollution, which is recorded as maximum nitrate-nitrite levels in (mg per L. Columns 2 - 6 include
other water quality indicators such as maximum fecal coliform, maximum temperature, dissolved oxygen, pH and maximum
conductivity. Panel A presents regression results where the entire upstream region for each water station is considered. In
Panel B, the upstream region is capped at 100 km to account for pollution decay over distance, serving as a robustness check
for results.
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Table 4. Placebo Test: Impact of NBS Policy on Water Quality Measures using Downstream Soil

(1) (2) (3) (4) (5) (6)
Nitrates Fecal Coli. Temperature DO pH Conductivity

Downstream Clay x Post 1.161 -12171.4 -0.141 0.292 235.4 -242.9
(1.704) (249872.5) (0.593) (0.206) (171.2) (549.0)

Observations 2739 3615 4111 4128 4158 4080
Dep var mean 3.085 2568940.3 28.40 8.135 18.05 1289.1
Station FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Table reports placebo estimates using downstream soil properties. Sample consists of water quality measurements recorded
at stations all over India from 2007 to 2014. Downstream Clay refer to water stations with clay levels above the median in
the region below the water monitoring station and is a dummy variable with the value 1 for high downstream stations and
0 otherwise. Standard errors are clustered at the water station level. Column 1 reports coefficients for nitrate pollution,
which is recorded as maximum nitrate-nitrite levels in (mg/l). Columns 2 - 6 include other water quality indicators such as
maximum fecal coliform, maximum temperature, dissolved oxygen, pH and maximum conductivity.
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Table 5. First-stage Regressions

Full Sample Rural Urban
(1) (2) (3)

Upstream Clay x Post[=1] 1.341∗∗∗ 1.607∗∗∗ 1.150∗∗∗

(0.149) (0.247) (0.233)

Constant 2.571∗∗∗ 1.994∗∗∗ 3.309∗∗∗

(0.0694) (0.111) (0.114)
Observations 31246 18318 12918
Dep var mean 0.0716 0.0897 0.0458
No. of clusters 6962 4298 2663
KP F-Stat 80.68 42.32 24.28
Cluster FE Yes Yes Yes
State x Year FE Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table reports first stage estimates. Sample consists of DHS clusters from
2007 to 2014. The dependent variable is Upstream Clay interacted with the post-
NBS indicator of a reference DHS cluster. Upstream Clay refer to DHS clusters with
clay levels above the median in their upstream watershed regions and is a dummy
variable with the value 1 for high clay upstream and 0 otherwise. Standard errors
are clustered at the DHS cluster level . The KP F-Stat is the Wald version of the
Kleibergen and Paap (2006) statistic on the excluded instrumental variables. Column
1 includes the full sample of DHS clusters located within 20kms of a water monitoring
station. Column 2 and 3 only uses the rural and urban clusters respectively.
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Table 6. Impact of NBS Policy on Infant Mortality

Reduced Form IV

Full Sample Rural Urban Full Sample Rural Urban

(1) (2) (3) (4) (5) (6)
Upstream Clay x Post 0.0106 0.0165 -0.00155

(0.0112) (0.0142) (0.0181)

Nitrates 0.0329∗ 0.0516∗∗ -0.0234
(0.0191) (0.0236) (0.0314)

Observations 51198 31002 20188 31246 18318 12918
Dep var mean 0.0745 0.0926 0.0467 0.0716 0.0897 0.0458
KP F-Stat 80.68 42.32 24.28
Cluster FE Yes Yes Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table reports coefficient estimates from reduced form specifications and instrumental
variables. Standard errors are clustered at the DHS cluster level. The first three columns report
estimates for the full sample, rural and urban samples of DHS clusters under the reduced form
specification. Columns 4, 5 and 6 show results from the IV specification for the full sample, rural
and urban samples. The sample is limited to clusters that have at least one monitoring station
within a 20km buffer. The KP F-Stat is the Wald version of the Kleibergen and Paap (2006)
statistic.
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Table 7. Impact of NBS Policy on Infant Mortality (Rural)

(1) (2) (3) (4)
10 km 20 km 30 km 40 km
Panel A: IV

Nitrates 0.0920∗ 0.0516∗∗ 0.0159 0.0307
(0.0494) (0.0236) (0.0212) (0.0336)

Observations 6795 18318 30524 41694
Dep var mean 0.0833 0.0897 0.0886 0.0906
No. of clusters 1601 4298 6957 9046
KP F-Stat 21.60 42.32 48.96 11.18

Panel B: Reduced Form

Upstream Clay x Post 0.0308 0.0165 -0.00426 -0.00737
(0.0207) (0.0142) (0.0114) (0.00986)

Observations 11673 31002 50973 67240
No. of clusters 1949 4963 7872 10043
Dep var mean 0.0834 0.0926 0.0942 0.0967
Cluster FE Yes Yes Yes Yes
State x Year FE Yes Yes Yes Yes
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table presents estimated coefficients for the effect of upstream nitrate pollution
on infant mortality across different buffer distances around each DHS rural cluster.
Standard errors are clustered at the cluster level. Column 1 consists of clusters that
have at least one water station within 10 km. Column 2 extends the buffer to 20 km.
Columns 3 and 4 extend the buffer to 30 and 40 km.
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Table 8. Reduced-form heterogeneity results for Nitrate Pollution

(1) (2) (3)
Upstream Clay x Post 5.574∗∗ 0.436 1.257

(2.220) (2.906) (2.495)

Upstream Clay x Post x Rain quartile 2 5.692∗∗ 5.047∗∗

(2.797) (2.474)

Upstream Clay x Post x Rain quartile 3 3.525 2.722
(2.236) (1.817)

Upstream Clay x Post x Rain quartile 4 4.605∗ 3.208
(2.702) (2.245)

Observations 2736 2736 2736
Dep var mean 3.087 3.087 3.087
R square 0.472 0.476 0.477
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < 0.01

Notes: Table reports estimates from heterogeneity analysis. Standard errors are
clustered at the water station level. Columns 1 reports results without rainfall inter-
actions. Column 2 reports results with total rainfall. Column 3 reports results with
monsoon rainfall. The lowest quartile is the baseline period and is dropped from the
regression.
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Figure A9. Log Consumption of Fertilizers at District Level

Notes: This figure shows the estimated coefficients from an event-study style regres-
sion with log fertilizer consumption of N, P and K at the district level as the outcome
variable. Log fertilizer consumption is regressed on year dummies with district fixed
effects. Time period 2009 (t = -1) is omitted.
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Figure A10. Infant Mortality Estimates

10 20 30 40
DHS Cluster Buffers (Km)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Notes: The figure reports coefficients for infant mortality in rural DHS clusters from
the IV regression with different buffers.
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Figure A11. Water Quality Indicators in High vs Low Clay Districts

Notes: The figure shows the regression coefficients of various water quality indicators
from the station-level data. The coefficients plotted are the interaction terms between
upstream clay levels and year dummies. The 95% confidence intervals are shown as
the shaded region. Standard errors are clustered at the district level. The model
includes water station fixed effects and state-year fixed effects.
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Figure A12. Treatment Definition

Notes: This figure shows the binary treatment at the district level in the difference
in difference and event study regression designs. I classify districts into high clay or
low clay based on the median clay content. The main model also does not include
districts with high levels of sandy soils.
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Figure A13. Total infant births and deaths by year

Notes: This figure shows the total number of live births and infant deaths within one
year of birth as reported by mothers in DHS clusters.
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Figure A14. Downstream flow path

Notes: This figure shows the downstream flow path for the highlighted water moni-
toring station.
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Figure A15. Upstream polygons

Notes: This figure shows the upstream polygons for all the water monitoring stations
in the data.
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